Cell Cycle Activation and Ouabain-Sensitive Ion Movements of 3T3 and C3H-10T¹/₂ Fibroblasts

Charles E. Wenner, John C. Cheney, and L. David Tomei

Department of Experimental Biology, Roswell Park Memorial Institute, Buffalo, New York 14263

The introduction of either $PGF_{2\alpha^{-}}(10^{-7} \text{ M})$ or TPA (10^{-7} M) stimulated, ouabain-sensitive ⁸⁶Rb⁺ influx at 30 min in postconfluent 3T3-4 mouse fibroblast cultures by 117% and 124%, respectively. Both TPA and $PGF_{2\alpha}$ at these concentrations stimulated the incorporation of ³H-TdR into DNA. TPA had the greatest stimulatory effect, which was similar to that obtained with 10% fetal calf serum. In accord with the idea that modulation of membrane processes such as Na⁺/K⁺ pump activity in fibroblasts may reflect important events related to the initiation of DNA synthesis, it was observed that in both 3T3-4 and C3H-10T¹/₂ cells there were parallel increases in ³H-TdR incorporation and ouabain-sensitive ⁸⁶Rb⁺ influxes with 10⁻⁷ M TPA, whereas PGF_{2α} stimulated a significant increase in ³H-TdR incorporation in 3T3-4 but not C3H-10T¹/₂ cells and only marginal increases in ouabain-sensitive ⁸⁶Rb⁺ influx in both. Therefore, although there appears to be a close correlation between Na⁺/K⁺ pump activation and subsequent S-phase entry following TPA stimulation, a similar correlation for PGF_{2α} cannot be confirmed.

Key words: phorbol ester prostaglandin $F_{2\alpha}$, (Na⁺ + K⁺)-ATPase, cell cycle activation

In postconfluent 3T3 mouse embryonic fibroblasts, tetradecanoyl phorbol acetate (TPA), PGF_{2α}, as well as serum, purified growth factors, and vasopressin, stimulate ³H-TdR incorporation into DNA. It has been proposed that one of the earliest changes produced in the cell leading to cycle activation is an increased ouabain-sensitive ⁸⁶Rb⁺ influx [1--6]. Ouabain itself also prevents the initiation of DNA synthesis after serum addition to postconfluent 3T3 cells [1]. This early increase in Na⁺/K⁺-pump-mediated activity by mitogenic agents raises the question as to the relationship of K⁺ movements to other metabolic events that lead to initiation of rapid proliferation. In this regard, Dicker and

Abbreviations: TPA, 12-o-tetradecanoyl-phorbol-13-acetate; 4-o-Me-TPA: 4-o-methyl tetradecanoyl phorbol acetate; $4(\alpha)$ -OH-PDD: $4(\alpha)$ -OH phorbol-12,13-didecanoate; ³H-TdR: ³H-thymidine; PCA: per-chloric acid.

Received April 21, 1980; accepted October 21, 1980.

0275-3723/81/1502-0161\$02.50 © 1981 Alan R. Liss, Inc.

162:JSSCB Wenner, Cheney, and Tomei

Rozengurt [6] have suggested that stimulation of ion fluxes such as K^* uptake may act as the possible convergence point of the pathway by which TPA and vasopressin act as mitogens.

Of particular interest is the comparison of TPA with mitogenic agents in the prostaglandin series. Rohrschneider and Boutwell [7] have pointed out that TPA bears a structural and functional relationship to polyunsaturated fatty acids, which are precursors of prostaglandins. In addition, Smythies et al [8] have proposed a tentative model receptor for prostaglandins and have suggested that TPA exerts its biological effects via prostaglandin receptor interaction. Although Furstenberger and Marks [9] have provided evidence that TPA is not a prostaglandin E-type agonist, Moroney et al [5] have demonstrated that TPA induces an early uptake of ⁸⁶Rb⁺ and ³²P_i in 3T3 cells in a manner analogous to that of PGF_{2α}. PGF_{2α} was, therefore, the prostaglandin of choice for further study.

The availability of a cell type, namely the C3H-10T½ mouse fibroblast, in which TPA but not $PGF_{2\alpha}$ stimulated cell proliferation in preliminary studies, allowed the comparison of the stimulation of the (Na^+/K^+) -ATPase activity with cell cycle activation. Therefore, the effects of phorbol esters and prostaglandin $F_{2\alpha}$ on ³H-TdR incorporation and ouabainsensitive ⁸⁶Rb⁺ uptake were examined.

MATERIALS AND METHODS

Cell Culture

Cultures of 3T3-4 mouse fibroblasts or C3H-10T½ clone-8 mouse fibroblasts (passages 9–14) were used for all experiments and were maintained as previously described [5, 10] using Eagle's basal medium (BME) supplemented with 10% heat-inactivated fetal calf serum (GIBCO, NY). Experiments were carried out in replicate cultures in 60-mm diameter plastic petri dishes (n = 4) seeded in 5-ml aliquots at 500 cells/sq cm for measurement of ³H-TdR incorporation at specific intervals or for measurement of ⁸⁶Rb⁺ uptake at 30 min after drug addition. The results are expressed in terms of mean values (\pm standard deviation) from quadruplicate plates. Stock cultures of 3T3-4 mouse embryonic fibroblasts were obtained from Dr. Howard Green, Massachusetts Institute of Technology, Cambridge, Mass, and C3H-10T½-8 were from Dr. John Bertram of this Institute.

³H-TdR Incorporation Studies

Drugs were added to culture dishes containing 5 ml of medium using a 10- μ l repeating automatic microsyringe (Hamilton). All drugs were prepared in 50% ethanol and control (untreated) cultures received equal volumes of solvent. Solvent additions did not exceed 10 μ l/5 ml of culture fluid (18 mM). Incorporation of ³ H-TdR into the acid-insoluble fraction was measured following a 1-h pulse with ³H-TdR (41 Ci/mmole) (Moravek, Calif) at 1 μ Ci/5 ml culture. Replicate cultures were pulsed every 3–5 h up to 28 h after drug addition.

Specific incorporation of ³H-TdR into DNA was measured as follows: Cultures were removed from the incubator, the medium was removed by aspiration and the cell monolayer was gently washed twice with Earle's balanced salt solution (EBSS), and 5 ml of cold 1.5% PCA was added. The dishes were placed at 4°C for 12–24 h after which each culture was washed twice with fresh cold 1.5% PCA, scraped off with a rubber policeman, and collected in a 12-ml siliconized conical centrifuge tube with 2 ml of PCA on ice. Measurement of DNA was made as described by Kissane and Robbins [11]. After centrifugation (800– 1,000g) for 5 min in a refrigerated centrifuge to form a uniform pellet, the supernatant was discarded and the pellet resuspended in 0.1 M potassium acetate in absolute ethanol on ice. After centrifugation, the pellet was then resuspended in 2 ml of absolute ethanol and placed in a water bath at 60°C for 30 min. After centrifugation and discarding the supernatant, the pellet was air-dried at 40°C. At this time, 15 μ l of 3,5-diaminobenzoate (300 mg/ml) was carefully placed upon the pellet in each tube. The tubes were then covered and placed in a water bath at 60°C for 30 min. Upon removal of the tubes, 2 ml of 6% PCA was added to each followed by brief vortex mixing. Total DNA was determined immediately by fluorescence measurement using a Perkin-Elmer 650-10S fluorescence spectrometer. The sample was then transferred to a 20-ml scintillation vial, and 10 ml of aqueous counting fluid was added followed by vigorous vortex mixing to ensure homogeneity. Final values were expressed as cpm of ³H per fluorescent unit.

Autoradiographic analysis of nuclear labeling frequency was carried out by growing the cells in 60-mm plastic petri dishes and fixing the cells with 1.5% PCA (12-24 h, 4° C). After rinsing the dishes with water and finally with methanol, the dried culture dishes were coated with NTB-3 Nucleotrack Emulsion (Kodak) and developed after 6 days. Nuclear labeling indices were determined by counting both labeled and unlabeled nuclei in 25 random fields (approximately 2,000 cells total) on triplicate cultures and expressed as percent labeled nuclei (\pm standard error).

Studies of ⁸⁶Rb⁺ Movements

Uptake studies were carried out with postconfluent cultures 72 h after the last medium change. Cells were prepared for uptake studies by decanting the media, adding 5 ml of serum-free Hanks balanced salt solution (HBSS) (pH 7.25) that contained ⁸⁶Rb⁺ (New England Nuclear Corp, Mass) and the appropriate drug to be tested. As mentioned above, precautions were taken to minimize the solvent volume, maximum 10 μ /5.0 ml. Approximately 2 μ Ci ⁸⁶Rb⁺ was present in each dish. After incubation, the supernatant was removed and decanted. Trichloroacetic acid was added to rupture the cells, and the acid-soluble fraction counted for ⁸⁶Rb⁺. Experiments were carried out in quadruplicate plates. TPA was obtained from Dr. P. Borchert, University of Minn, and PGF_{2α} was a gift from Dr. J. Pike (Upjohn Co, Mich), and 4-α-OH-PPD was from Dr. E. Hecker (Heidelberg).

RESULTS

Comparison of the Effects of Prostaglandin $F_{2\alpha}$, TPA, and Serum on Ouabain-Sensitive ⁸⁶Rb⁺ Incorporation and ³H-TdR Incorporation in 3T3-4 Cells

TPA bears a structural similarity to prostaglandin precursors [7], and since earlier results indicated that $PGF_{2\alpha}$ stimulated ouabain-sensitive ⁸⁶Rb⁺ uptake [5], the stimulatory effects of TPA and $PGF_{2\alpha}$ on ⁸⁶Rb⁺ uptake and ³H-TdR were compared.

In an experiment described in Table I, the effects of TPA, $PGF_{2\alpha}$, and serum on ⁸⁶Rb⁺ uptake by 3T3-4 fibroblasts were examined in the presence and absence of ouabain (10^{-3} M) . In either case, maximal stimulation was attained with serum, followed closely by TPA at a concentration of 10^{-7} M. This stimulation was largely ouabain-sensitive. $PGF_{2\alpha}$ gave an intermediate stimulation of ⁸⁶Rb⁺ uptake, and again this represented a largely ouabain-sensitive component.

When postconfluent quiescent cultures were stimulated by TPA 48–72 h after the last medium renewal, two changes in the kinetics of ³H-TdR incorporation were observed: an initial but transient suppression between 8–13 h and a substantial increase in the incorporation rate between 13–28 h (Fig. 2). As also illustrated in Figure 1, PGF_{2α} was less active when compared with TPA but gave reproducible and significant increases in ³H-

⁸⁶ Rb ⁺ Uptake by 3T3-4 Fibroblasts [†]		
		With ouabai
Additions	Without ouabain	(1 mM)

TABLE I. Effect of TPA, $PGF_{2\alpha}$, and Serum on Ouabain-Sensitive

Additions	Without ouabain	(1 mM)	
	% of Control	% of Control	
None	100.0 ± 6.8	53.8 ± 7.8	
TPA (10 ⁻⁷ M)	124 ± 7.1**	62.4 ± 8.2	
$PGF_{2\alpha} (10^{-7} \text{ M})$	117 ± 8.6*	56.6 ± 3.6	
Fetal calf serum (10%)	$140 \pm 8.9 **$	67.1 ± 21.3	

 \dagger The control values in this experiment were 59.5 ± 2.9 nmoles ⁸⁶Rb⁺ uptake per 5 × 10⁵ cells × h.

*P < 0.05

***P* < 0.01

Fig. 1. Comparison of the effects of fresh serum (*), 10^{-7} M TPA (X), and 10^{-7} M PGF₂₀ (\odot) with untreated cultures (•) on ³H-TdR pulse incorporation in postconfluent 3T3-4 cells 48 h after medium renewal. Measurements of ³H-TdR incorporation into acid-insoluble material following 1 h exposure beginning at the indicated time after drug addition.

TdR incorporation at 10^{-7} M. The peak pulse incorporation was approximately 2.5 times that of control, substantially less than that obtained with either TPA (10^{-7} M) or fresh serum (10% v/v). Although transient suppression of incorporation could be observed with PGF_{2 α} as shown here, such effects were not consistently observed nor did they exhibit any obvious dose dependency as found with TPA. In no experiment was serum observed to produce a suppression in the incorporation rate.

Comparison of TPA and PGF_{2 α} Effects on ⁸⁶Rb⁺ Uptake in C3H-10T¹/₂ Cells; In Addition, the Effects of Stereoisomeric Homologs on ⁸⁶Rb⁺ Uptake

Next, the effects of TPA at varied concentrations on ⁸⁶Rb⁺ uptake by postconfluent C3H-10T¹/₂ fibroblasts were examined, and it was observed as seen in an experiment described in Table II, that optimal uptake occurred at concentrations of 10^{-8} M to 10^{-6} M. Also in Table II, the ability of TPA and PGF_{2α} to enhance ⁸⁶Rb⁺ uptake was compared

Concentration	TPA (% of Control)	4-o-Me-TPA (% of Control)	PGF _{2α} (% of Control)
0	100.0 ± 2.2	_	
10 ⁻⁸ M	139.0 ± 3.6**	99.6 ± 3.2	97.7 ± 4.7
$1 imes 10^{-7}$ M	139.7 ± 2.2**	103.2 ± 4.3	107.4 ± 7.3
$3 \times 10^{-7} M$	141.2 ± 6.5**	102.9 ± 3.3	$105.2 \pm 2.2^*$
$1 \times 10^{-6} M$	140.6 ± 2.7**	112.5 ± 2.7**	111.7 ± 2.9**

TABLE II. Effect of Concentration of TPA, 4-o-Me-TPA, and PGF_{2 α} on ⁸⁶Rb⁺ Uptake by C3H-10T¹/₂ Cells[†]

†The control value expressed in nmoles $^{86}Rb^+$ uptake per 5 \times 10 $^{\rm s}$ cells \times h was 96.0 \pm 1.5.

*P < 0.05

**P < 0.01

TABLE III. Effect of TPA and PGF_{2\alpha} on Ouabain-Sensitive $^{86}Rb^{\ast}$ Uptake in C3H-10T½ Fibroblasts

Ouabain (1 mM)	Control ^a	TPA (10 ⁻⁷ M)	$PGF_{2\alpha} (10^{-7} M)$
		Experiment 1	
	100.0 ± 4.7	130.5 ± 14.7*	110.8 ± 17.9
+	62.3 ± 7.2	68.2 ± 9.6	68.6 ± 9.3
		Experiment 2	
_	100.0 ± 4.3	128.6 ± 5.5**	112.1 ± 3.8*
+	67.7 ± 2.1	$78.2 \pm 3.6*$	76.0 ± 2.4*

^aThe control values expressed in nmoles ⁸⁶Rb⁺ uptake per 5×10^{5} cells × h for Experiment 1 were 92.8 ± 3.1; for Experiment 2, they were 70.9 ± 3.7.

*P < 0.05

**P < 0.01

with the inactive promoter, 4-o-Me-TPA. Only TPA gave a pronounced stimulation of ⁸⁶Rb⁺ uptake at concentrations of 3×10^{-7} M or below. At 10^{-6} M, both PGF_{2 α} and 4-o-Me-TPA produced a small but significant increase in ⁸⁶Rb influx.

In Table III, two experiments are described in which the ouabain sensitivity of TPAand PGF_{2α}-induced responses in ⁸⁶Rb⁺ uptake were examined. Again in both experiments, TPA at 10^{-7} M produced a more pronounced enhancement of ⁸⁶Rb⁺ uptake. PGF_{2α} at 10^{-7} M was observed to stimulate a minor yet significant increase in ⁸⁶Rb⁺ uptake. The stimulation of ⁸⁶Rb⁺ uptake was largely ouabain-sensitive with approximately 9%–18% of the uptake for both TPA and PGF_{2α} being accounted for in ouabain-insensitive component.

In addition, the effects on ⁸⁶Rb⁺ uptake of a stereoisomeric phorbol ester analogue (inactive as a tumor promoter) were compared with those of TPA; 4- α -phorbol didecanoate (4 α -PDD) allows assessment of surface activity as described previously [12]. The results obtained with 4 α -PDD, its stereoisomer PDD and TPA are described in an experiment reported in Table IV. Again, TPA produced a pronounced stimulation of ⁸⁶Rb⁺ uptake, PDD produced an intermediate effect, and in contrast to what is observed with TPA and PDD, 4 α -PDD produced little or no stimulation of ⁸⁶Rb⁺ uptake.

Additions	nmoles ⁸⁶ Rb ⁺ uptake per test ^a	% of Control ^a	
None	83 ± 2.8	100 ± 4.8	
$TPA (10^{-7} M)$	111 ± 4.7	133.7 ± 7.2	
4α-PDD	81 ± 0.6	97.5 ± 3.4	
PDD	91 ± 4.9	110.0 ± 7.0	

TABLE IV. Comparison of TPA and PDD With the Stereoisomeric 4α -PDD on $^{86}Rb^+$ Uptake by C3H-10T½ Cells*

*The mean cell number per dish was 3.9×10^5 .

^aMean \pm standard error (n = 4).

Fig. 2. The dose dependency of TPA (x), and PGF₂₀ (\odot) on the cumulative nuclear labeling index 20 h after drug addition in postconfluent quiescent 10T½ cells. Untreated cultures yielded fewer than 20 labeled nuclei per 10³ cells (see Materials and Methods).

Fig. 3. Effect of TPA (x) and PGF_{2Q} (\odot) on the specific incorporation of ³H-TdR into acid-insoluble material in postconfluent quiescent 10T½ cultures. Cells were pulsed for 1 h with ³H-TdR. Values are expressed in ³H-TdR incorporation per fluorescent unit as measured by modification of the Kissane and Robbins method [11].

Effect of TPA and PGF_{2 α} on ³H-TdR Incorporation in C3H-10T¹/₂ Cells

The dose response curve of TPA and $PGF_{2\alpha}$ on ³H-TdR incorporation into nuclei was examined by autoradiography. As described in an experiment reported in Figure 2, TPA in concentrations as low as 10^{-9} M increased the number of labeled nuclei at 20 h. The inactive tumor promoter analogue 4α -PDD exhibited no activity at $10^{-9}-10^{-7}$ M. At 10^{-6} M 4α -PDD did exhibit appreciable labeling activity. This is considered to be a toxic effect at a concentration that exhibits significant surface activity [12]. In contrast to the effects observed with TPA, $PGF_{2\alpha}$ at concentrations from $10^{-9}-10^{-6}$ M did not alter the number of labeled nuclei from control values.

As also seen in an experiment reported in Figure 3, TPA (10^{-7} M) but not PGF_{2 α} enhanced the incorporation of ³H-TdR into the acid-insoluble material by over 50-fold. Peak incorporation was observed at 20–24 h after TPA introduction.

DISCUSSION

It was observed that in 3T3 mouse fibroblasts, TPA and PGF_{2α} induce a parallel stimulation of ³H-TdR incorporation into the acid-insoluble fraction and $(Na^{\dagger}/K^{\dagger})$ -ATPase activity as measured by an increase in ouabain-sensitive ⁸⁶Rb⁺ uptake. It is also noted that the stimulatory effects with PGF_{2α}, although significant, are not as striking as that obtained with TPA or 10% fetal calf serum.

In contrast, in C3H-10T¹/₂ cells, $PGF_{2\alpha}$ does not alter ³H-TdR incorporation into nuclei or the acid-insoluble fraction as does TPA. Further, the stimulation by $PGF_{2\alpha}$ of ouabain-sensitive ⁸⁶Rb⁺ uptake is marginal when compared with that of TPA. This marginal but significant stimulation of membrane transport by $PGF_{2\alpha}$ is not sufficient by itself to initiate the proliferative response. Nevertheless, modulation of membrane events such as the stimulation of the Na⁺/K⁺ pump activity in fibroblasts may be a necessary condition for initiation of associated biosynthetic events.

The effects of PGF_{2α} and TPA in these two lines of mouse embryonic fibroblasts differed qualitatively in several other aspects. For example, it was observed that the morphological changes induced by TPA in C3H-10T½ fibroblast cultures are not seen with PGF_{2α} additions. TPA but not PGF_{2α} caused marked alteration of cell shape from wide and flat to pleomorphic and highly refractile [14]. It was also noted that in contrast to TPA, which has been reported to stimulate cellular adhesion in several cell types including C3H-10T½ cells, similar responses to prostaglandins D₂, E₁, E₂, and F_{2α} were not observed for this cell type [14]. Further, TPA ($10^{-8}-10^{-6}$ M) but not PGF_{2α} ($10^{-8}-10^{-6}$ M) induces up to 50% increases in glycolysis with postconfluent C3H-10T½ cells in contrast to similar increases by TPA and PGF_{2α} observed in 3T3 cells [15].

A definitive answer to the role of ion movements in cell proliferation may require measurement within distinct regions or subpopulations of cells rather than studies of net differences over the entire cell population. In support of the idea that cellular domains are integral to cellular responses are current studies by the authors that provide evidence for nonrandom response patterns under conditions similar to those described in ⁸⁶Rb⁺ experiments [16]. Thus, a study of TPA-induced stimulation of cell cycle and associated trypsin-resistant adhesion in quiescent cell cultures revealed that responses are confined to distinct regions of the cell culture and that mitogenic responses are not normally distributed with respect to position on the culture dish. Thus, a spatial nonrandom statistical factor determining response to TPA has been found. This implies that a multidimensional analysis is necessary to finally determine the answers to the questions inferred from one-dimensional

168:JSSCB Wenner, Cheney, and Tomei

analysis such as that presented here. In support of mutual interaction of cells in the pharmacology of TPA is recent evidence that TPA alters metabolic cooperativity between cells [17]. Therefore, based upon measurement of net ⁸⁶Rb⁺ influx, only TPA provides a clear correlation with cell cycle activation, whereas $PGF_{2\alpha}$ responses are equivocal at best. It is suggested that small net changes induced by $PGF_{2\alpha}$ may represent substantial increases in Na⁺/K⁺ pump activity in a small number of cells. This is in accord with the percentage of labeled nuclei observed at 24 h since only 8%–12% of C3H-10T½ cells have labeled nuclei following 10⁻⁷ M TPA administration (Fig. 2). Similarly in 3T3 cells, approximately 15% of nuclei are labeled at 24 h after continuous incubation with TPA [18].

ACKNOWLEDGMENTS

The authors are indebted to John H. Hackney and Louise Bartels for their capable technical assistance.

This work was supported by a grant from the National Cancer Institute (CA-13784).

REFERENCES

- 1. Rozengurt E, Heppel LA: Proc Natl Acad Sci USA 72:4492, 1975.
- 2. Bourne HR, Rozengurt E: Proc Natl Acad Sci USA 73:4555, 1976.
- 3. Rozengurt E, Legg A, Pettican P: Proc Natl Acad Sci USA 76:1284, 1979.
- 4. Lever JE, Clingan D, Jiminez de Asua L: Biochem Biophys Res Commun 71:136, 1976.
- 5. Moroney J, Smith A, Tomei LD, Wenner CE: J Cell Physiol 95:287, 1978.
- 6. Dicker P, Rozengurt E: J Supramol Struct 11:79, 1979.
- 7. Rohrschneider LR, Boutwell RK: Nature New Biology 243:212-213, 1973.
- 8. Smythies JR, Benington F, Morin RD: Psychoneuroendocrinology 1:123-130, 1975.
- 9. Furstenberger G, Marks F: Cancer Lett 6:73-77, 1979.
- 10. Reznikoff CA, Brankow DW, Heidelberger C: Cancer Res 33:3231, 1973.
- 11. Kissane JM, Robbins E: J Biol Chem 233:184, 1958.
- 12. Jacobson K, Wenner CE, Kemp G, Papahadjopoulos D: Cancer Res 35:2991, 1975.
- 13. Tomei LD, Bertram JC, Wenner CE: 12th International Cancer Congress Proceedings, Buenos Aires, Argentina, 1976, vol 1, p 168.
- 14. Tomei LD, Proc Am Assoc Cancer Res 21:102, 1980.
- 15. Wenner CE, Hackney J, Tomei LD: 12th International Cancer Congress Proceedings, Buenos Aires, Argentina, 1976, vol 1, p 189.
- 16. Tomei LD, Cheney JC, Wenner CE: J Cell Physiol (in press).
- 17. Fitzgerald DJ, Murray AW: Cancer Res 40:2935, 1980.
- 18. Dicker P, Rozengurt E: Nature 276:723, 1978.